Celona – LTE for Enterprise at MFD4

After the Mobility Field Day 4 live streams stopped, we secretly met with a secret company and were sworn to secrecy through a series of secret rituals and rites. OK, that might be a slight exaggeration, but there was definitely an unannounced company at MFD4.

That company, Celona, has now gone public, and it’s finally time to talk about what this could mean for the future of mobile devices inside enterprise networks. Here’s a hint: It is exciting!

Celona’s product is a fully integrated cloud based solution for CBRS or Citizens Band Radio Service. Before we go any further, understand that CBRS has nothing to do with truckers, Smokey and the Bandit, oversized antennas or anything near 27Mhz.

Instead, CBRS uses spectrum above 3.5Ghz and LTE technology with power output of up to 1watt/Mhz EIRP allowed by the FCC. The combination of higher power and LTE could mean a much broader coverage area than is usually offered by conventional Wi-Fi.

Further, clients that are CBRS capable must meet the much stricter 3GPP standards. Those standards highlight how weak and incapable the Wi-Fi Alliance is. Most importantly, those standards remove many of the client frustrations that many wireless engineers face daily such as poor 802.11r,k,v support.

Certification is required to install CBRS equipment and is attained after completing an online course. This course from Google cost $599 for the course and online exam, which makes it accessible to most wireless engineers who may decide to expand their craft and marketable skills. The certification is required as there are licensing requirements and frequency coordination, similar to those proposed for the 6ghz band due to incumbents in the space.

The best part of CBRS is that it allows enterprise customers to take ownership of their LTE coverage and data. Celona’s solution will enable ownership of the data path from the client device through the CBRS system and on to either internally hosted systems or out to the internet.

A quick google search will bring up a slew of articles screaming, “CBRS will kill Wi-Fi.” That is hardly the case. However, there are plenty of places where CBRS will be an excellent solution. For example, areas with high roaming requirements will benefit from the LTE underpinnings. Additionally, in medical and hospital systems iPhones, which are regularly used SIM-less to ensure HIPAA and PI data protection, will be able to connect to a hospital managed and controlled CBRS system.

Celona’s role in this space is providing the cloud based management solution and hardware. It’s easy to imagine them as the Mist Systems of CBRS, and that’s not far from the truth. Their business model is especially useful in CBRS, because it doesn’t require extensive knowledge of LTE standards to configure and manage a solution.

Before Celona’s vision can become fully realized, there are a few barriers to entry. In short, we need a skilled workforce that is capable and licensed to install and manage the equipment and appropriate tools required to design and troubleshoot installations.

The tools challenge is significant. Spectrum planning and coverage design is more complicated due to frequency coordination and licensing. Spectrum Analyzers which are currently capable of checking 3.5Ghz are very expensive and each new tool comes with a learning curve.

Considering the number of devices which support Band 48 out of the box, including the new iPhone, devices are already available. Celona brings the network that enterprises can install. With the right tools and enough licensed engineers, Celona and CBRS could have a very bright future.

Check out the event page at TechFieldDay.com and let me know what you think in the comments.

Introduction to Celona and CBRS Fundamentals from Gestalt IT on Vimeo.

Mist Systems Unveils an Environmental Sensor that is also a Wi-Fi 6 AP

At Mobility Field Day 4, we heard from a few companies which are working hard to extend the capabilities of their AP’s well past only serving traditional 802.11 clients.
Mist Systems, a Juniper Company, was one such presenter, and they might have a fantastic new platform with their latest hardware, the AP43.

Mist Wi-Fi 6 AP Specs

The idea is simple. Most campuses have AP’s covering their entire environment. In many large environments, they share that ceiling space with other types of sensors or networks. These overlay networks may include building and security sensors, Zigbee control of lights or door locks, and test sensor networks.

In many ways, Mist has been a bit ahead of this curve. Their AP’s already included an IoT port, which enabled triggering devices like door locks or sensing through a variety of GPIO sensors.

Their new AP43 is a dual 5Ghz capable 802.11ax access point. It includes 802.3bz NBASE-T port to ensure the network port never becomes a bottleneck. That port also includes 802.3bt power capabilities so that it can pass power out of its secondary port, enabling it to daisy chain any 802.3af network device. The obvious candidate here is the BT11, Mist’s BLE sensor.

Further, each AP43 includes built-in sensors to provide temperature, humidity, barometric pressure, and angle/orientation. The inclusion of these sensors come with some unique engineering challenges. If Mist is successful in getting them to work appropriately, it could be a game-changer.

The biggest challenge when considering environment monitoring on an access point is heat. Anyone who has ever touched an AP that has been on for a while knows it can be hot. Thanks to the first law of thermodynamics, we know that all energy consumed by the AP that doesn’t get radiated as RF is instead transformed to heat. But that heat output isn’t consistent. It will vary based on the transmitter duty cycle or CPU load of the AP.

Additionally, that heat creates a micro-climate around the AP, which will lower the humidity percentage since warm air holds more water than cool air. Warm air is also less dense, which may affect the barometric pressure sensor.

The humidity/heat problem is further exacerbated by the fact that all water in the air is absorbing a small amount of the radiated RF power.

Finally, the ceiling can be many degrees warmer than in the same room at desk level.
These are challenges that I am sure Mist has taken into account, and the fact that they can work through them is impressive. Having environmental reporting built into the AP could make for a fantastic use case for building managers.

Moving down the list, the barometric pressure and orientation/angle sensor have some compelling use cases. By comparing atmospheric pressure among AP neighbors, Mist should be able to tell which AP’s are on the same floor in multi-floor buildings. This information could significantly impact 802.11k neighbor reports. By excluding AP’s which may be heard by the AP, but are obviously on a different floor, the chances of a client choosing a better roam candidate increases.

By comparing atmospheric pressure among AP neighbors, Mist should be able to tell which AP’s are on the same floor in multi-floor buildings. This information could significantly impact 802.11k neighbor reports.

Finally, the angle sensor can help identify AP’s mounted on a wall versus a ceiling. With that information and Mist’s ML backend, it should be able to better locate clients in RTLS environments.

These new sensors extend the AP capabilities well past the traditional use cases. Can Mist pull off the environmental monitoring? Can they adjust their neighbor report automatically based on elevation? I’m excited to play with these features in the future and get to the bottom of these answers and more.

Either way, it is clear that Mist has built the AP43 as a platform they can innovate with and I’m excited to see where they take it.

Take a look and tell me what you think:

Mist Systems Mist AI for AX – Wi-Fi 6 from Gestalt IT on Vimeo.

MFD3 – Link-Live Updates

This is the third blog from the Company-Previously-Known-As-Netscout’s session at Mobility Field Day 3. You can read about the AirCheck G2 v3.0 update and also the LinkRunner G2 v2.0 Update.

To catch you up, I came into MFD3 less enthusiastic than most regarding Netscout and their lineup of handheld network tools. With that said, I took notice in 2017 at MFD2 that the company was paying attention to feedback and looking for suggestions on how to improve their product offerings.

One of those improvements for MFD3 was a further expansion of the capabilities of Link-Live.

Link-Live has matured into a tool for consolidating all of your test results AND managing the tools at your disposal.

Many of these updates were covered in the LinkRunner and AirCheck updates, but bear repeating:

  • AirCheck software updates
  • AirCheck G2 Profile sharing
  • Packet capture sharing
  • Simplified App search for the LinkRunner G2
  • Files Folder – There is a lot more available that can be uploaded and saved to a project folder
  • Full AutoTest results

The most significant aspect of the Link-Live updates is a clear direction to make the LinkRunner and AirCheck entirely manageable without a Windows PC. This is a substantial shift from the past, and I am very excited to see it taking place because I stay away from Windows as much as possible.

So, the ultimate question, does the updates to the AirCheck G2 and LinkRunner G2, along with the new features of Link-Live make me change my opinion? Do I now see the ROI? Would I spend my budget, either personal or business on either tool?

The answer is “yes” to all of the above. With the divestiture of the handheld tools from Netscout into its own company, I expect the future to be bright. I think we will continue to see updates, new use cases, and great support. The handheld network tools team has won me over, and I’m happy to change my previous opinion. I will acquire both tools over the coming months for my personal toolkit, as I know my employer doesn’t have the budget. I don’t think there is more to say.

MFD3 – AirCheck G2 V3.0 Announcement

aircheckg2In case you missed it, MFD3 was an opportunity to reevaluate my opinion on the Aircheck G2 and LinkRunner G2. After my experiences at MFD2, I was no longer openly hostile towards the tools and saw that there was a legitimate desire to be open, fill the needs of users, and provide regular updates with new features.

As someone who identifies explicitly as a Wireless Network Engineer, the AirCheck G2 has been on my radar for a while, so I was interested, maybe even excited, about the opportunity to see the latest updates.

The AirCheck G2 v3.0 update adds:

  • Over-the-Network firmware updates – Sadly the V3.0 software update will have to be loaded from a PC, but from that point forward, a user with an active support contract can update the device directly.
  • Over-the-Network profile sharing – If your organization has more than one AirCheck G2, you can now ensure that everyone is testing using the same profile, all over-the-air through Link-Live.
  • Improved Link-Live interaction – manage device profiles, get test results, packet captures, etc.
  • Improved Locator Tool accuracy the Locator Tool now uses all three radio chains to enhance signal strength and accuracy
  • Enhanced AP name support – can now read AP names from Aerohive, Aruba, Cisco, Extreme Networks, and Huawei
  • Improved iPerf test performance – can now test using iPerf2, up to 300Mbps
  • Improved packet capture workflow – now users can be particular regarding the type of traffic they want to capture
  • Voice VLAN on ethernet test – if there is a voice VLAN assigned to the ethernet port, it will be displayed
  • Import certificates with a thumb drive – This simplifies importing certificates and is especially crucial for wireless engineers who might work at various customer sites.
  • Static IP’s can be assigned to the ethernet port
  • Other updates, which you should watch the video to see:

 

So, have I changed my mind? Am I ready to own a LinkSprinter G2 or AirCheck G2? Well, I think we should discuss Link-Live. That definitely factors into my decision.

MFD3 – Huge updates for AirCheck G2 and LinkRunner G2; then Netscout announces their sale

Mobility Field Day 3 was great! If you missed it, I will be releasing a few blogs over the coming weeks from my experience at the event. In the meantime, you can watch all of the videos here:

https://techfieldday.com/event/mfd3/

One of the most interesting developments this morning was the announcement from Netscout that it was divesting its handheld network test division to StoneCalibre.

The press release can be found here:
https://www.netscout.com/news/press-release/netscout-divests-handheld-network-test-business

While this announcement creates quite a few questions around the future, I firmly believe that the great group of people who have brought us the recently announced LinkRunner G2 v2.0 and AirCheck G2 v3.0 software updates are going to keep killing it. I’m excited to see what they bring to us in the future and hope to see them presenting once again at Mobility Field Day 4.

Arista announces acquisition of Mojo Networks

Today after the markets closed, Arista announced the acquisition of Mojo Networks. This is a very interesting development, and I am curious to see what Arista does with the technology.

You can read the press release here.

If you are asking “Who is Mojo Networks?” you clearly weren’t paying attention at MFD2 during the Mojo Networks presentation. Take a look at it here:

Mojo Presents at Mobility Field Day 2

You can see more at the Mobility Field Day 2 Event page:

http://techfieldday.com/appearance/mojo-networks-presents-at-mobility-field-day-2/

What do you think about this team up? Is this a good decision for Arista? How do you see it impacting the WiFi community?

Geek Tools – Ventev VenVolt

Any wireless engineer who has spent time completing AP-on-a-stick (APoS) surveys has probably used the Terrawave MIMO 802.3af POE battery. It was a heavy lead-acid battery in a metal case, which promised six hours of use before needing a recharge. Most days it did deliver 6 hours when powering an AP with a single radio enabled. However, I often found that if you ran both AP radios, it would regularly give you less; usually running right around 5 hours with a charge during a meal break.

Did I mention it was heavy? Travel through airports and the TSA was a lot of fun too!

Now, Ventev has a new battery, the VenVolt. It’s sleek, orange, and much lighter. The VenVolt has a bunch of new features which make this an essential addition to any wireless engineer’s toolkit.5132514

  • The battery is now a lithium iron phosphate. That’s the weight savings that makes this thing easy to take on the road. It also ensures plenty of power delivery when needed and long-term stability of that power. Additionally, LiFePO4 battery chemistry is known for higher cycle life and better stability, which should relieve any concerns of a Samsung Note 7 style battery fires.
  • Better power delivery allows the VenVolt to efficiently deliver 802.3at power; a requirement for 802.11ac access points.
  • If 802.3at power wasn’t enough, Ventev includes a three amp, 15 watt, USB power port. That port can be used to trickle charge a laptop, or it can power my favorite tool, an Odroid, which I always use when surveying.
  • That power port wouldn’t be nearly as exciting for me without the final major upgrade, ethernet passthrough.

There are lots of “little” updates that should be mentioned as well:

  • A single switch! No more guessing which switch combination was needed for charging.
  • An LCD screen that shows charge status, voltage, and gives you some guess of the available runtime.
  • The case is ruggedized and has been drop tested to ensure reliability.

Let’s talk through my “new normal” setup with the VenVolt. I connect the AP to the “802.3AF/AT Out” port. There is no difference between that and the old heavy battery.
Next, I connect an ethernet cable between the “Ethernet In” port on the VenVolt and the ethernet port on my Odroid.
Finally, I connect a micro-USB cable between the Odroid and the USB port on the front of the VenVolt.
The magic happens due to the flexibility of my Odroid. A few jobs it runs:

  • iPerf, HTTP, Ping endpoint for any throughput/active surveys that I need to run.
  • TFTP Server – This is where I host boot or firmware files for the many various AP’s that I might use for surveys.
  • DHCP/DNS Server – Makes it easy for the TFTP Updates, client connections, etc.
  • Encrypted File Storage – This is where I store backups of survey files, any building drawings that I am given, or any specifics that I might need at a location.

One final note. The VenVolt is labeled “MK1”. To me, this is a suggestion that updates will come in the future, rather than the “one-and-done” approach of the Terrawave Battery. While I’m excited to see what may come in MK2, this is an excellent upgrade and a definite requirement for anyone who spends time doing APoS surveys.

There was an excellent session at WLPC, where Ventev employees Dennis Burrell and Mike Parry, along with Sam Clements discussed the development process for the VenVolt. It’s worth watching:

Relevent Links:

Ventev VenVolt

Ventev Infrastructure

Ventev Infrastructure supplied me with a VenVolt for testing and provided me the ability to give feedback. All written content provided here is my personal opinion, and has not been manipulated in any way by Ventev. I appreciate all companies who welcome constructive feedback!